
EX10

Section Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Sanity checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3
DP Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4
Bonus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7



§1 EX10 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in lab ten—Matrix Chain
Multiplication.

This problem is stated as follows:
Given a sequence of N commensurable matrices, A1, A2 . . . AN , determine the optimal order in which to

compute the product A1 ×A2 × . . .×AN .
We will start with the, by now familiar, outline of the program. We don’t need any functions other than

main and there will be no global data either.
Actually, that is not quite true. We will need one function for a small bonus at the end of our program.

〈Headers 4 〉
using namespace std;

〈Prototypes for functions 16 〉
〈The main program 2 〉
〈 Implementation for functions 17 〉



2 MAIN EX10 §2

2. Main. OK, let’s start writing main . The skeleton of the main program is as follows.

〈The main program 2 〉 ≡
int main ( )
{
〈Variables of main 3 〉
〈Open the input file 5 〉
〈Read in the matrix dimensions and initialize the data 7 〉
〈Do the main loop 10 〉
〈Finish and clean up 14 〉
}

This code is used in section 1.

3. The first thing we need to do is declare the variables we need to input data. Let’s start with the
character array filename and the input stream fin .

〈Variables of main 3 〉 ≡
char filename [20];

ifstreamfin ;

See also sections 6, 8, and 9.

This code is used in section 2.

4. We need a couple of header files for handling the input process:

〈Headers 4 〉 ≡
#include <iostream>

#include <fstream>

See also section 11.

This code is used in section 1.

5. Right—now we can get the file opened, ready for input. We will prompt for the input file name using
cerr so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.

〈Open the input file 5 〉 ≡
cerr � "Please enter the name of the input file: ";
cin � filename ;
fin .open (filename );
if (¬fin ) {

cerr � "Error opening file " � filename � ". Program will exit." � endl ;
return 0;
}

This code is used in section 2.



§6 EX10 SANITY CHECKING 3

6. Sanity checking. Before we start looping over the input we need to read in the matrix dimensions
from the input file.

The input file contains an integer variable N , the number of matrices to be mutiplied, followed by N pairs
of row and column dimensions.

The sequence of matrices A1, A2, . . . , AN can only be multiplied if the number of rows in each matrix is
identical to the number of columns in its predecessor. Formally, ∀ i; 1 < i ≤ N : rowi = coli−1. This means
that, rather than storing N pairs of dimensions, we need only store N + 1 dimension values. We will store
these in the array size .

〈Variables of main 3 〉 +≡
int N ;
int ∗size ;

7. We can now read the data. As we read in the pairs we will use the requirement that dimensions match
from matrix to matrix as a sanity check on the input.

〈Read in the matrix dimensions and initialize the data 7 〉 ≡
fin � N ;
size = new int[N + 1];
for (int i = 1; i ≤ N ; i++) {

fin � check � size [i];
if (i ≡ 1) size [0] = check ;
else {
if (size [i− 1] 6= check ) {

cerr � "Error: matrices are incommensurable!" � endl ;
cerr � "     Matrix " � i− 1� " has " � size [i− 1]� " columns, and " � endl ;
cerr � "     matrix " � i� " has " � check � " rows." � endl ;
return 1;

}
}
}

This code is used in section 2.

8. We need a variable to hold the check value, the number of rows of each matrix.

〈Variables of main 3 〉 +≡
int check ;



4 DP MATRIX MULTIPLICATION EX10 §9

9. DP Matrix multiplication. Now we can proceed with the main part of the algorithm.
The approach we are going to take is a bottom up computation of the best way to multiply out all possible

partitions of the matrix sequence.
We will iterate over the number of matrices in the sub-sequence, increasing the length of of the chain from

1 up to N . At each length we will iterate across all possible ways of splitting the chain into two pieces.
The array best [ ][ ] will hold the lowest cost associated with multiplying together sub-sequences of matrices.

Thus, best [i][j] will contain the lowest cost for evaluating the product Ai ×Ai+1 × . . .×Aj−1 ×Aj .

〈Variables of main 3 〉 +≡
int ∗∗best ;
int ∗∗split ;

10. There are a couple of preliminary steps before the main loop; creating the best [ ][ ] array and initializing
it. Once this has been done we can proceed to the main iterative calculation.

We note that array Ai has size [i− 1] rows and size [i] columns.
If we wish to multiply all matrices from Ai up to Ak we can do this in a number of ways. Essentially we

can vary j over all values from i up to k − 1 and, provided we already have the best way to calculate the
sub-products Ai ×Ai+1 × . . .×Aj and Aj+1 × . . .×Ak−1 ×Ak, then we can readily evaluate the total cost
for each choice of k.

This cost has three components:
• the minimum cost of evaluating Ai ×Ai+1 × . . .×Aj , stored in best [i][j];
• the minimum cost of evaluating Aj+1 × . . .×Ak−1 ×Ak, stored in best [i][j];
• the cost of performing the final multiplication.

The cost for this partition is simply the sum of these three components.

〈Do the main loop 10 〉 ≡
〈Declare the best array 12 〉
〈 Intitialize the best array 13 〉
for (int chainLength = 2; chainLength ≤ N ; chainLength ++) {
for (int i = 1; i ≤ N − chainLength + 1; i++) {

int k = i + chainLength − 1;

best [i][k] = INT_MAX;
for (int j = i; j ≤ k − 1; j++) {

int cost = best [i][j] + best [j + 1][k] + size [i− 1] ∗ size [j] ∗ size [k];

if (cost < best [i][k]) best [i][k] = cost ;
split [i][k] = j;

}
}
}

This code is used in section 2.

11. We need a header file for INT_MAX to be defined.

〈Headers 4 〉 +≡
#include <climits>



§12 EX10 DP MATRIX MULTIPLICATION 5

12. We create the double dimensioned array best in two stages. First, we create an array of int ∗ pointers
which will address the rows of best . Then, for each row, we will create an integer array which will hold the
column entries for the corresponding row.
Note: The best array will be declared with N + 1 rows and columns so that we can store the solution for
the sub-sequence from Ai to Ak in best [i][k]. This means that entries of the form best [0][i] and best [i][0] are
not used. (Actually, only half of the entries in best are ever used, entries of the form best [i][j] where i > j
never get set or examined, but finding an optimal way to store a triangular matrix is outside the scope of
this subject.)

〈Declare the best array 12 〉 ≡
best = new int∗[N + 1];
split = new int∗[N + 1];
for (int i = 0; i ≤ N ; i++) {

best [i] = new int[N + 1];
split [i] = new int[N + 1];
}

This code is used in section 10.

13. The starting point for our bottom up solution is the set of N individual matrices. As there is no
multiplication involved with a single matrix, the associated cost will be 0.

〈 Intitialize the best array 13 〉 ≡
for (int i = 1; i ≤ N ; i++) {

best [i][i] = 0;
split [i][i] = i;
}

This code is used in section 10.

14. Now that we have finished our search we can report the results and clean up. The least computationally
costly solution to multiplying all the matrices is simply the value of best[1][N].

〈Finish and clean up 14 〉 ≡
cout � "Minimum cost = " � best [1][N ]� endl ;
fin .close ( );

See also section 15.

This code is used in section 2.



6 BONUS EX10 §15

15. Bonus. You may have noticed several references to the array split [ ][ ] in the preceding code. This
has been used to track the optimal partition corresponding to the minimal cost stored in best [i][j]. We can
use this array to reconstruct and display the optimal sequence.

To do this we will use a recursive function show ( ) to display the sequence. The output from show is a
fully parenthesized sequence where matching parentheses indicate the optimal sub-sequences. Thus, output
of the form "((1)(2))(3)" would indicate that the best result comes from multiplying A1 by A2 and then
multiplying this result by A3.

We kick this off by calling as follows:

〈Finish and clean up 14 〉 +≡
cout � "The optimal multiplication sequence is as follows:" � endl ;
show (split , 1, N);
cout � endl ;

16. First is the prototype:

〈Prototypes for functions 16 〉 ≡
void show (int ∗∗, int, int);

This code is used in section 1.

17. And then the implementation: This function determines the point at which the input sequence
Astart . . . Aend is split for optimal evaluation. Thus, to evaluate Astart × . . . × Aend we multiply Astart ×
. . .×Amid by Amid+1× . . .×Aend. The value mid is exactly what was stored in split [start ][end ]. When we
are down to a single matrix, we output its index. Otherwise, we parenthesize the recursive calls for the left
and right sub-sequences.

〈 Implementation for functions 17 〉 ≡
void show (int ∗∗split , int start , int end )
{
if (start ≡ end ) cout � start ;
else {
int mid = split [start ][end ];

cout � "(";
show (split , start ,mid );
cout � ")";
cout � "(";
show (split ,mid + 1, end );
cout � ")";

}
return;
}

This code is used in section 1.



§18 EX10 INDEX 7

18. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

best : 9, 10, 12, 13, 14, 15.
bonus: 1, 15.
cerr : 5, 7.
chainLength : 10.
check : 7, 8.
cin : 5.
close : 14.
cost : 10.
cout : 14, 15, 17.
end : 17.
endl : 5, 7, 14, 15.
filename : 3, 5.
fin : 3, 5, 7, 14.
i: 7, 10, 12, 13.
ifstream : 3.
INT_MAX: 10, 11.
j: 10.
k: 10.
main : 2.
mid : 17.
N : 6.
open : 5.
show : 15, 16, 17.
size : 6, 7, 10.
split : 9, 10, 12, 13, 15, 17.
start : 17.
std: 1.



8 NAMES OF THE SECTIONS EX10

〈Declare the best array 12 〉 Used in section 10.

〈Do the main loop 10 〉 Used in section 2.

〈Finish and clean up 14, 15 〉 Used in section 2.

〈Headers 4, 11 〉 Used in section 1.

〈 Implementation for functions 17 〉 Used in section 1.

〈 Intitialize the best array 13 〉 Used in section 10.

〈Open the input file 5 〉 Used in section 2.

〈Prototypes for functions 16 〉 Used in section 1.

〈Read in the matrix dimensions and initialize the data 7 〉 Used in section 2.

〈The main program 2 〉 Used in section 1.

〈Variables of main 3, 6, 8, 9 〉 Used in section 2.


	Introduction
	Main
	Sanity checking
	DP Matrix multiplication
	Bonus
	Index
	Names of the sections
	Declare the best array
	Do the main loop
	Finish and clean up
	Headers
	Implementation for functions
	Intitialize the best array
	Open the input file
	Prototypes for functions
	Read in the matrix dimensions and initialize the data
	The main program
	Variables of main


