
EX6

Section Page
Introduction . 1 1
Main . 2 2
Store values in the table . 7 3
Karp-Rabin Hashing . 10 4
The initial hash . 13 5
Rolling, rolling, rolling . 16 6
Index . 19 7

§1 EX6 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in lab six—Karp-Rabin pattern
matching.

We will start with the, by now familiar, outline of the program. This time we will not use global data and
we have no functions other than main .

〈Headers 4 〉
using namespace std;

〈The main program 2 〉

2 MAIN EX6 §2

2. Main. OK, let’s start writing main . The skeleton of the main program is as follows.

〈The main program 2 〉 ≡
int main ()
{
〈Variables of main 3 〉
〈Open and the input file 5 〉
〈Store the target and search strings 7 〉
〈Calculate the initial hash values 13 〉
〈Perform the Karp-Rabin search 16 〉
〈Finish and clean up 18 〉
}

This code is used in section 1.

3. The first thing we need to do is declare the variables we need to input data. Let’s start with the
character array filename and the input stream fin .

〈Variables of main 3 〉 ≡
char filename [20];

ifstreamfin ;
See also sections 6, 8, and 14.

This code is used in section 2.

4.

〈Headers 4 〉 ≡
#include <iostream>

#include <fstream>

See also section 9.

This code is used in section 1.

5. Right—now we can get the file opened, ready for input. We will prompt for the input file name using
cerr so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.

〈Open and the input file 5 〉 ≡
cerr � "Please enter the name of the input file: ";
cin � filename ;
fin .open (filename);
if (¬fin) {

cerr � "Error opening file " � filename � ". Program will exit." � endl ;
return 0;
}

This code is used in section 2.

6. Before we start reading the file we need to declare the data structure we are going to use to store our
two strings. The specification states that the search string, S, is no longer than 10 characters and the target
string, T , is no longer than 5000. I will declare two integer constants S_MAX and T_MAX with these values.

It should be noted that, while changing T_MAX will not cause problems, increasing T_MAX may not be so
straightforward. The reason for this will be explained later, as well as a remedy.

〈Variables of main 3 〉 +≡
const int S_MAX = 10;
const int T_MAX = 5000;
char S[S_MAX];
char T [T_MAX];

§7 EX6 STORE VALUES IN THE TABLE 3

7. Store values in the table. We are now ready to read in our strings. we will read them both in the
order T followed by S and calculate their lengths.

〈Store the target and search strings 7 〉 ≡
fin � T � S;
sLen = strlen (S);
tLen = strlen (T);

This code is used in section 2.

8. We need to add these to our variables.

〈Variables of main 3 〉 +≡
int sLen , tLen ;

9. We also need the include file for strlen ().

〈Headers 4 〉 +≡
#include <cstring>

4 KARP-RABIN HASHING EX6 §10

10. Karp-Rabin Hashing. (An aside).
To start the process we need to calculate the Karp-Rabin hash values for S and the initial substring of

T . in each case we do this by summing the result of multiplying each character of the string—or some
representation of it—by a prime number raised to a power related to its position in the string.

That was confusing! Lets look at an example.
Consider the string ”ACAG” which has a length of 4 characters. Its hash would be calculated as

p3’A’ + p2’C’ + p’A’ + ’G’, where p is a prime number that is greater than the integer equivalent of
the largest element of the search string.

Choice of p is critical because we need to calculate large powers of p in our Karp-Rabin hash. If we have
a string of length n characters, the first character will be multiplied by pn−1 and the sum will be ∈ O(pn).
These are large numbers and it is not hard to overflow the storage capacity of an int data value.

If we take a näıve approach to the current problem we get the following analysis. . .
• Largest character = ’T’, with ASCII value 84.
• Smallest prime > 84 = 89.
• Largest power of 89 that fits in an int = 4.

This means that, as soon as the search string gets to 5 characters in length we will overflow our 32-bit
integer. Even if we use long int to store our hash values that will still overflow at 9 characters.

There are two possible solutions:
1. Reduce the size of the prime number, p.
2. Reduce the size of the hash value.

The first of these approaches is computationally cheaper and is the strategy we will use in this program.
The second approach is computationally more expensive so we will avoid it as, in this case, it will not be
needed.

If, even after we have found the smallest usable prime, we still overflow an int variable we can still use
Karp-Rabin. In this case we introduce a further variable modulus which we use to limit the size of the
calculated hash values to ensure that they can never overflow our int. We choose modulus so that it is
as large as possible but still small enough that any intermaediate value in our calculation cannot cause an
overflow. In effect this means that the inequality modulus ∗ p < INT_MAX must be maintained. The idea
being that, every time we mutiply something by p, we immediately reduce it modulo modulus .

In the following code I have introduced comments showing the modulus-enabled version of the calculations.

11. To reduce the size of p we must reduce the encoded value of the characters in our alphabet. In the
present case we have only 4 different input characters, ’A’, ’C’, ’G’ and ’T’. Thus, the size of our alphabet
is 4.

If we can recode the input letters into the range 0 . . . 3 or 0 . . . 4 we can use the prime number 5 in our
hash calculation. It turns out that we can do this efficiently by replacing the ASCII value of the character
S[i] with S[i] % 5. This gives the following encoding:
’A’ ASCII value 65, after mod 0;
’C’ ASCII value 67, after mod 2;
’G’ ASCII value 71, after mod 1;
’T’ ASCII value 84, after mod 4.

12. With p set to the value 5 we can now handle strings up to 13 characters in length and we are safe!
Note that using other approaches to reducing the alphabet encoding may be computationally costly. For

example, the following is a Bad Idea (tm).
switch (char) { case ’A’: char = 0; break; case ’C’: char = 1; break; case ’G’: char = 2; break;

case ’T’: char = 3; }

§13 EX6 THE INITIAL HASH 5

13. The initial hash. OK, Let’s do it.

〈Calculate the initial hash values 13 〉 ≡
for (int i = 0; i < sLen ; i++) {

sHash = sHash ∗ p + S[i] % crunch ; /∗ sHash = (sHash ∗ p + S[i] % crunch ;) % modulus ∗/
tHash = tHash ∗ p + T [i] % crunch ; /∗ tHash = (tHash ∗ p + T [i] % crunch ;) % modulus ∗/
power ∗= p;
}
power /= p;

This code is used in section 2.

14. We introduced a few new variables there. In order, sHash is the Karp-Rabin hash value for the search
string S, tHash is the hash of the initial substring of T , and power is used to precalculate the value of

psLen−1 which we will need in the rolling hash phase. We haven’t declared crush , the value we use to reduce
the alphabetic encoding, or p, our prime number, so we should do that too.

〈Variables of main 3 〉 +≡
int sHash = 0, tHash = 0;
int p = 5, crunch = 5;
int power = 1;

15. It just occurred to me that the way I calculated the initial hash values for S and T may not be
entirely obvious. The technique used was something known as Horner’s Compact Evaluation. This allows
the computation of polynomial expressions in a very efficient way and works as follows:

Consider the polynomial:

P =

n∑
i=0

anx
n

a polynomial in x with n + 1 terms having coefficients a0, a1, . . . , an−1, an.
If we evaluate this in the obvious way, term by term, we will need to perform many more multiplications

than is strictly necessary. As an alternative we can rewrite the polynomial in a nested form as follows:

P = a0 + x(a1 + x(a2 + (... + x(an)...)))

which takes only n rather than O(n2) multiplications.
The loop in our program evaluates the hash values using exactly this scheme, evaluating the innermost

term first and working outwards.

6 ROLLING, ROLLING, ROLLING EX6 §16

16. Rolling, rolling, rolling. Now we can proceed with the actual search. We do this by comparing
the hash code sHash with the hash codes of each substring of T with the same length as S, i.e. sLen .

To calculate the next tHash value we simply:
• subtract the contribution of the first character from tHash ;
• multiply this by p;
• add the contribution of the new character at the end of the substring;

〈Perform the Karp-Rabin search 16 〉 ≡
for (int i = 0; i < tLen − sLen ; i++) {
if (sHash ≡ tHash) {
〈Brute-force compare S with T [i..1 + sLen − 1 17 〉

}
tHash = (tHash − power ∗ (T [i] % crunch)) ∗ p + (T [i + sLen] % crunch);
/∗ tHash = ((tHash − power ∗ (T [i] % crunch)) ∗ p) % modulus + (T [i + sLen] % crunch); ∗/

}
This code is used in section 2.

17. The brute-force comparison is easy.

〈Brute-force compare S with T [i..1 + sLen − 1 17 〉 ≡
bool same = true ;

for (int j = 0; j < sLen ; j++) {
if (S[j] 6= T [i + j]) {

same = false ;
break;

}
}
if (same) cout � "Match found starting at T[" � i� "]" � endl ;

This code is used in section 16.

18. We should also close our input file.

〈Finish and clean up 18 〉 ≡
fin .close ();
return 0;

This code is used in section 2.

§19 EX6 INDEX 7

19. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

cerr : 5.
cin : 5.
close : 18.
cout : 17.
crunch : 13, 14, 16.
crush : 14.
endl : 5, 17.
false : 17.
filename : 3, 5.
fin : 3, 5, 7, 18.
i: 13, 16.
ifstream : 3.
INT_MAX: 10.
j: 17.
main : 1, 2.
modulus : 10, 13, 16.
open : 5.
p: 14.
power : 13, 14, 16.
S: 6.
S_MAX: 6.
same : 17.
sHash : 13, 14, 16.
sLen : 7, 8, 13, 14, 16, 17.
std: 1.
strlen : 7, 9.
T : 6.
T_MAX: 6.
tHash : 13, 14, 16.
tLen : 7, 8, 16.
true : 17.

8 NAMES OF THE SECTIONS EX6

〈Brute-force compare S with T [i..1 + sLen − 1 17 〉 Used in section 16.

〈Calculate the initial hash values 13 〉 Used in section 2.

〈Finish and clean up 18 〉 Used in section 2.

〈Headers 4, 9 〉 Used in section 1.

〈Open and the input file 5 〉 Used in section 2.

〈Perform the Karp-Rabin search 16 〉 Used in section 2.

〈Store the target and search strings 7 〉 Used in section 2.

〈The main program 2 〉 Used in section 1.

〈Variables of main 3, 6, 8, 14 〉 Used in section 2.

	Introduction
	Main
	Store values in the table
	Karp-Rabin Hashing
	The initial hash
	Rolling, rolling, rolling
	Index
	Names of the sections
	Brute-force compare S with T [i..1+sLen-1
	Calculate the initial hash values
	Finish and clean up
	Headers
	Open and the input file
	Perform the Karp-Rabin search
	Store the target and search strings
	The main program
	Variables of main

