In this project, you will visualize and make calculations from medical examination data using matplotlib, seaborn, and pandas. The dataset values were collected during medical examinations.
The rows in the dataset represent patients and the columns represent information like body measurements, results from various blood tests, and lifestyle choices. You will use the dataset to explore the relationship between cardiac disease, body measurements, blood markers, and lifestyle choices.
Create a chart similar to `examples/Figure_1.png`, where we show the counts of good and bad outcomes for the `cholesterol`, `gluc`, `alco`, `active`, and `smoke` variables for patients with cardio=1 and cardio=0 in different panels.
* Add an `overweight` column to the data. To determine if a person is overweight, first calculate their BMI by dividing their weight in kilograms by the square of their height in meters. If that value is > 25 then the person is overweight. Use the value 0 for NOT overweight and the value 1 for overweight.
* Normalize the data by making 0 always good and 1 always bad. If the value of `cholesterol` or `gluc` is 1, make the value 0. If the value is more than 1, make the value 1.
* Convert the data into long format and create a chart that shows the value counts of the categorical features using seaborn's `catplot()`. The dataset should be split by 'Cardio' so there is one chart for each `cardio` value. The chart should look like `examples/Figure_1.png`.
* Create a correlation matrix using the dataset. Plot the correlation matrix using seaborn's `heatmap()`. Mask the upper triangle. The chart should look like `examples/Figure_2.png`.