Compare commits

..

No commits in common. "08d9bf66cfde87e8dd023b7e2d29e2033512f4bc" and "88b7d3d03addcb7ab5d5fde6a1d40598316a06e4" have entirely different histories.

6 changed files with 44 additions and 1315 deletions

View File

@ -1,3 +1,24 @@
# Page View Time Series Visualizer
### Assignment
This is the boilerplate for the Page View Time Series Visualizer project. Instructions for building your project can be found at https://www.freecodecamp.org/learn/data-analysis-with-python/data-analysis-with-python-projects/page-view-time-series-visualizer
For this project you will visualize time series data using a line chart, bar chart, and box plots. You will use Pandas, Matplotlib, and Seaborn to visualize a dataset containing the number of page views each day on the freeCodeCamp.org forum from 2016-05-09 to 2019-12-03. The data visualizations will help you understand the patterns in visits and identify yearly and monthly growth.
Use the data to complete the following tasks:
* Use Pandas to import the data from "fcc-forum-pageviews.csv". Set the index to the "date" column.
* Clean the data by filtering out days when the page views were in the top 2.5% of the dataset or bottom 2.5% of the dataset.
* Create a `draw_line_plot` function that uses Matplotlib to draw a line chart similar to "examples/Figure_1.png". The title should be "Daily freeCodeCamp Forum Page Views 5/2016-12/2019". The label on the x axis should be "Date" and the label on the y axis should be "Page Views".
* Create a `draw_bar_plot` function that draws a bar chart similar to "examples/Figure_2.png". It should show average daily page views for each month grouped by year. The legend should show month labels and have a title of "Months". On the chart, the label on the x axis should be "Years" and the label on the y axis should be "Average Page Views".
* Create a `draw_box_plot` function that uses Searborn to draw two adjacent box plots similar to "examples/Figure_3.png". These box plots should show how the values are distributed within a given year or month and how it compares over time. The title of the first chart should be "Year-wise Box Plot (Trend)" and the title of the second chart should be "Month-wise Box Plot (Seasonality)". Make sure the month labels on bottom start at "Jan" and the x and x axis are labeled correctly.
For each chart, make sure to use a copy of the data frame. Unit tests are written for you under `test_module.py`.
### Development
For development, you can use `main.py` to test your functions. Click the "run" button and `main.py` will run.
### Testing
We imported the tests from `test_module.py` to `main.py` for your convenience. The tests will run automatically whenever you hit the "run" button.
### Submitting
Copy your project's URL and submit it to freeCodeCamp.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

After

Width:  |  Height:  |  Size: 108 KiB

View File

@ -3,8 +3,6 @@
authors = ["Your Name <you@example.com>"]
name = "root"
version = "0.0.0"
description = ""
[tool.poetry.dependencies]
pandas = "*"
python = "^3.7"

File diff suppressed because one or more lines are too long

View File

@ -4,7 +4,7 @@ import matplotlib as mpl
class DataCleaningTestCase(unittest.TestCase):
def test_data_cleaning(self):
actual = int(time_series_visualizer.df.count(numeric_only=True))
actual = int(time_series_visualizer.df.count())
expected = 1238
self.assertEqual(actual, expected, "Expected DataFrame count after cleaning to be 1238.")
@ -26,7 +26,7 @@ class LinePlotTestCase(unittest.TestCase):
expected = "Page Views"
self.assertEqual(actual, expected, "Expected line plot ylabel to be 'Page Views'")
def test_line_plot_data_quantity(self):
def test_line_plot_data_quatity(self):
actual = len(self.ax.lines[0].get_ydata())
expected = 1238
self.assertEqual(actual, expected, "Expected number of data points in line plot to be 1238.")
@ -83,10 +83,10 @@ class BoxPlotTestCase(unittest.TestCase):
self.assertEqual(actual, expected, "Expected box plot 1 ylabel to be 'Page Views'")
actual = self.ax2.get_xlabel()
expected = "Month"
self.assertEqual(actual, expected, "Expected box plot 2 xlabel to be 'Month'")
self.assertEqual(actual, expected, "Expected box plot 1 xlabel to be 'Month'")
actual = self.ax2.get_ylabel()
expected = "Page Views"
self.assertEqual(actual, expected, "Expected box plot 2 ylabel to be 'Page Views'")
self.assertEqual(actual, expected, "Expected box plot 1 ylabel to be 'Page Views'")
actual = []
for label in self.ax1.get_xaxis().get_majorticklabels():
actual.append(label.get_text())
@ -109,9 +109,9 @@ class BoxPlotTestCase(unittest.TestCase):
self.assertEqual(actual, expected, "Expected box plot 1 title to be 'Year-wise Box Plot (Trend)'")
actual = self.ax2.get_title()
expected = "Month-wise Box Plot (Seasonality)"
self.assertEqual(actual, expected, "Expected box plot 2 title to be 'Month-wise Box Plot (Seasonality)'")
self.assertEqual(actual, expected, "Expected box plot 1 title to be 'Month-wise Box Plot (Seasonality)'")
def test_box_plot_number_of_boxes(self):
def test_box_plot_number_of_boxs(self):
actual = len(self.ax1.lines) / 6 # Every box has 6 lines
expected = 4
self.assertEqual(actual, expected, "Expected four boxes in box plot 1")

View File

@ -1,112 +1,53 @@
import calendar
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
# Import data (Make sure to parse dates. Consider setting index column to 'date'.)
df = pd.read_csv("fcc-forum-pageviews.csv")
df = None
# Clean data
df = df[(
df['value'] >= df['value'].quantile(0.025))
& (df['value'] <= df['value'].quantile(0.975))]
df = None
def draw_line_plot():
# Draw line plot
fig, axs = plt.subplots(ncols=1, figsize=(20, 10))
sns.lineplot(df["value"], estimator=None).set(
xlabel="Date",
ylabel="Page Views",
xticklabels=df.index,
title='Daily freeCodeCamp Forum Page Views 5/2016-12/2019')
# Save image and return fig (don't change this part)
fig.savefig('line_plot.png')
return fig
def draw_bar_plot():
df = pd.read_csv(
"fcc-forum-pageviews.csv", parse_dates=True, index_col=[0])
df = df[
(df['value'] >= df['value'].quantile(0.025))
& (df['value'] <= df['value'].quantile(0.975))]
# Copy and modify data for monthly bar plot
df['year'] = df.index.year
df['month'] = df.index.month
df_bar = None
# Draw bar plot
df.groupby(['year', 'month']).mean()
df_bar = df.groupby([df.index.year, df.index.month]).mean()
df_bar['month'] = df_bar['month'].apply(
lambda x: calendar.month_name[int(x)])
df_bar = df_bar.astype({'year': 'int'})
fig, axs = plt.subplots(ncols=1, figsize=(20, 10))
sns.barplot(
data=df_bar,
x='year',
y='value',
hue='month',
hue_order=[
'January',
'February',
'March',
'April',
'May',
'June',
'July',
'August',
'September',
'October',
'November',
'December']).set(
xlabel='Years', ylabel='Average Page Views')
# Save image and return fig (don't change this part)
fig.savefig('bar_plot.png')
return fig
def draw_box_plot():
# Prepare data for box plots (this part is done!)
df = pd.read_csv("fcc-forum-pageviews.csv", parse_dates=True, index_col=0)
df = df[(df['value'] >= df['value'].quantile(0.025))
& (df['value'] <= df['value'].quantile(0.975))]
df_box = df.copy()
df_box.reset_index(inplace=True)
df_box['year'] = [d.year for d in df_box.date]
df_box['month'] = [d.strftime('%b') for d in df_box.date]
# Draw box plots (using Seaborn)
fig, axs = plt.subplots(ncols=2, figsize=(24, 10))
sns.boxplot(data=df_box, ax=axs[0], x="year", y="value").set(
title="Year-wise Box Plot (Trend)", ylabel="Page Views", xlabel="Year")
sns.boxplot(
data=df_box,
ax=axs[1],
x="month",
y="value",
order=[
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec"]).set(
title="Month-wise Box Plot (Seasonality)",
ylabel="Page Views",
xlabel="Month")
# Save image and return fig (don't change this part)
fig.savefig('box_plot.png')