fixed test_plot_data_points and test_plot_lines (#3)

* Fixed test_plot_data_points to match given data

Some of the expected values in test_plot_data_points have extra digits.  The second data point had a y value of 0.22047244100000002 instead of 0.220472441 as given in the csv data file.  These cause errors with assertEqual.  It works fine with just this change, but it is still checking floats for equality which could be brittle. I also modified the assert line to use np.testing.assert_almost_equal which checks lists in an element-by-element fashion with tolerance and should be more robust.

* fixed test_plot_lines

Question asks for regression line "Through the year 2050" but the expected lists stops at the y-value for 2049.  Added datapoint for 2050 in both lines.  assertEqual was throwing errors for differences in 10th digit, changing this to np.testing.assert_almost_equal checks the first 7 digits which is a more robust way to check a regression calculated value.

* Added numpy import at top

added numpy import at top for np.testing.assert_almost_equal
This commit is contained in:
Chris DiCarlo 2021-04-19 12:58:56 -04:00 committed by GitHub
parent c35e9d25c0
commit d23928ece0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,7 @@
import unittest import unittest
import sea_level_predictor import sea_level_predictor
import matplotlib as mpl import matplotlib as mpl
import numpy as np
# the test case # the test case
@ -26,15 +27,15 @@ class LinePlotTestCase(unittest.TestCase):
def test_plot_data_points(self): def test_plot_data_points(self):
actual = self.ax.get_children()[0].get_offsets().data.tolist() actual = self.ax.get_children()[0].get_offsets().data.tolist()
expected = [[1880.0, 0.0], [1881.0, 0.22047244100000002], [1882.0, -0.440944881], [1883.0, -0.232283464], [1884.0, 0.590551181], [1885.0, 0.531496062], [1886.0, 0.43700787399999996], [1887.0, 0.216535433], [1888.0, 0.299212598], [1889.0, 0.362204724], [1890.0, 0.440944881], [1891.0, 0.374015748], [1892.0, 0.499999999], [1893.0, 0.6850393690000001], [1894.0, 0.303149606], [1895.0, 0.767716535], [1896.0, 0.46850393700000004], [1897.0, 0.6732283459999999], [1898.0, 1.043307086], [1899.0, 1.338582676], [1900.0, 1.125984251], [1901.0, 1.1102362190000001], [1902.0, 1.291338581], [1903.0, 1.6062992109999998], [1904.0, 1.2007874], [1905.0, 0.9842519679999999], [1906.0, 1.251968503], [1907.0, 1.196850392], [1908.0, 1.098425196], [1909.0, 1.27559055], [1910.0, 1.2716535420000001], [1911.0, 1.598425195], [1912.0, 1.476377951], [1913.0, 1.5472440930000002], [1914.0, 1.795275589], [1915.0, 2.10629921], [1916.0, 2.031496061], [1917.0, 1.854330707], [1918.0, 1.791338581], [1919.0, 1.854330707], [1920.0, 1.905511809], [1921.0, 1.988188974], [1922.0, 1.952755904], [1923.0, 1.999999998], [1924.0, 1.7125984230000002], [1925.0, 1.791338581], [1926.0, 2.0472440919999997], [1927.0, 2.003937006], [1928.0, 1.850393699], [1929.0, 1.905511809], [1930.0, 2.062992124], [1931.0, 2.0472440919999997], [1932.0, 2.271653541], [1933.0, 2.440944879], [1934.0, 2.228346454], [1935.0, 2.448818895], [1936.0, 2.295275588], [1937.0, 2.519685037], [1938.0, 2.6220472409999998], [1939.0, 2.826771651], [1940.0, 2.618110234], [1941.0, 3.098425194], [1942.0, 3.098425194], [1943.0, 3.098425194], [1944.0, 2.84645669], [1945.0, 2.95669291], [1946.0, 3.2519685010000003], [1947.0, 3.374015745], [1948.0, 3.562992122], [1949.0, 3.51181102], [1950.0, 3.598425193], [1951.0, 3.9724409410000003], [1952.0, 3.8700787360000004], [1953.0, 4.043307082], [1954.0, 3.929133854], [1955.0, 3.964566925], [1956.0, 3.763779524], [1957.0, 4.291338578], [1958.0, 4.346456688], [1959.0, 4.358267712], [1960.0, 4.503937003], [1961.0, 4.748031491], [1962.0, 4.543307082], [1963.0, 4.480314956], [1964.0, 4.1692913339999995], [1965.0, 4.6102362160000006], [1966.0, 4.397637791], [1967.0, 4.452755901000001], [1968.0, 4.484251963999999], [1969.0, 4.751968499], [1970.0, 4.67716535], [1971.0, 4.881889759], [1972.0, 5.240157475], [1973.0, 5.003937003], [1974.0, 5.472440939], [1975.0, 5.409448812999999], [1976.0, 5.370078735], [1977.0, 5.303149601], [1978.0, 5.555118105], [1979.0, 5.362204719], [1980.0, 5.5984251910000005], [1981.0, 6.0866141670000005], [1982.0, 5.858267711], [1983.0, 6.188976372000001], [1984.0, 6.153543301], [1985.0, 5.74803149], [1986.0, 5.771653537000001], [1987.0, 5.795275585], [1988.0, 5.980314955], [1989.0, 6.157480308999999], [1990.0, 6.2322834579999995], [1991.0, 6.334645663], [1992.0, 6.35826771], [1993.0, 6.291338576], [1994.0, 6.499999992999999], [1995.0, 6.618110229], [1996.0, 6.787401568], [1997.0, 7.066929127000001], [1998.0, 6.665354324], [1999.0, 7.011811016], [2000.0, 7.062992119], [2001.0, 7.287401567000001], [2002.0, 7.3818897560000005], [2003.0, 7.7598425120000005], [2004.0, 7.740157472000001], [2005.0, 7.74409448], [2006.0, 7.9173228270000005], [2007.0, 7.996062984], [2008.0, 8.350393692], [2009.0, 8.586614164], [2010.0, 8.901574794], [2011.0, 8.96456692], [2012.0, 9.326771643999999], [2013.0, 8.980314951]] expected = [[1880.0, 0.0], [1881.0, 0.220472441], [1882.0, -0.440944881], [1883.0, -0.232283464], [1884.0, 0.590551181], [1885.0, 0.531496062], [1886.0, 0.437007874], [1887.0, 0.216535433], [1888.0, 0.299212598], [1889.0, 0.362204724], [1890.0, 0.440944881], [1891.0, 0.374015748], [1892.0, 0.499999999], [1893.0, 0.685039369], [1894.0, 0.303149606], [1895.0, 0.767716535], [1896.0, 0.468503937], [1897.0, 0.673228346], [1898.0, 1.043307086], [1899.0, 1.338582676], [1900.0, 1.125984251], [1901.0, 1.110236219], [1902.0, 1.291338581], [1903.0, 1.606299211], [1904.0, 1.2007874], [1905.0, 0.984251968], [1906.0, 1.251968503], [1907.0, 1.196850392], [1908.0, 1.098425196], [1909.0, 1.27559055], [1910.0, 1.271653542], [1911.0, 1.598425195], [1912.0, 1.476377951], [1913.0, 1.547244093], [1914.0, 1.795275589], [1915.0, 2.10629921], [1916.0, 2.031496061], [1917.0, 1.854330707], [1918.0, 1.791338581], [1919.0, 1.854330707], [1920.0, 1.905511809], [1921.0, 1.988188974], [1922.0, 1.952755904], [1923.0, 1.999999998], [1924.0, 1.712598423], [1925.0, 1.791338581], [1926.0, 2.047244092], [1927.0, 2.003937006], [1928.0, 1.850393699], [1929.0, 1.905511809], [1930.0, 2.062992124], [1931.0, 2.047244092], [1932.0, 2.271653541], [1933.0, 2.440944879], [1934.0, 2.228346454], [1935.0, 2.448818895], [1936.0, 2.295275588], [1937.0, 2.519685037], [1938.0, 2.622047241], [1939.0, 2.826771651], [1940.0, 2.618110234], [1941.0, 3.098425194], [1942.0, 3.098425194], [1943.0, 3.098425194], [1944.0, 2.84645669], [1945.0, 2.95669291], [1946.0, 3.251968501], [1947.0, 3.374015745], [1948.0, 3.562992122], [1949.0, 3.51181102], [1950.0, 3.598425193], [1951.0, 3.972440941], [1952.0, 3.870078736], [1953.0, 4.043307082], [1954.0, 3.929133854], [1955.0, 3.964566925], [1956.0, 3.763779524], [1957.0, 4.291338578], [1958.0, 4.346456688], [1959.0, 4.358267712], [1960.0, 4.503937003], [1961.0, 4.748031491], [1962.0, 4.543307082], [1963.0, 4.480314956], [1964.0, 4.169291334], [1965.0, 4.610236216], [1966.0, 4.397637791], [1967.0, 4.452755901], [1968.0, 4.484251964], [1969.0, 4.751968499], [1970.0, 4.67716535], [1971.0, 4.881889759], [1972.0, 5.240157475], [1973.0, 5.003937003], [1974.0, 5.472440939], [1975.0, 5.409448813], [1976.0, 5.370078735], [1977.0, 5.303149601], [1978.0, 5.555118105], [1979.0, 5.362204719], [1980.0, 5.598425191], [1981.0, 6.086614167], [1982.0, 5.858267711], [1983.0, 6.188976372], [1984.0, 6.153543301], [1985.0, 5.74803149], [1986.0, 5.771653537], [1987.0, 5.795275585], [1988.0, 5.980314955], [1989.0, 6.157480309], [1990.0, 6.232283458], [1991.0, 6.334645663], [1992.0, 6.35826771], [1993.0, 6.291338576], [1994.0, 6.499999993], [1995.0, 6.618110229], [1996.0, 6.787401568], [1997.0, 7.066929127], [1998.0, 6.665354324], [1999.0, 7.011811016], [2000.0, 7.062992119], [2001.0, 7.287401567], [2002.0, 7.381889756], [2003.0, 7.759842512], [2004.0, 7.740157472], [2005.0, 7.74409448], [2006.0, 7.917322827], [2007.0, 7.996062984], [2008.0, 8.350393692], [2009.0, 8.586614164], [2010.0, 8.901574794], [2011.0, 8.96456692], [2012.0, 9.326771644], [2013.0, 8.980314951]]
self.assertEqual(actual, expected, "Expected different data points in scatter plot.") np.testing.assert_almost_equal(actual, expected, 7, "Expected different data points in scatter plot.")
def test_plot_lines(self): def test_plot_lines(self):
actual = self.ax.get_lines()[0].get_ydata().tolist() actual = self.ax.get_lines()[0].get_ydata().tolist()
expected = [-0.5421240249263661, -0.4790794409142336, -0.41603485690208686, -0.3529902728899543, -0.2899456888778218, -0.22690110486568926, -0.16385652085355673, -0.1008119368414242, -0.037767352829277456, 0.025277231182855076, 0.08832181519498761, 0.15136639920712014, 0.21441098321925267, 0.2774555672313852, 0.34050015124351773, 0.4035447352556645, 0.466589319267797, 0.5296339032799295, 0.5926784872920621, 0.6557230713041946, 0.7187676553163271, 0.7818122393284739, 0.8448568233406064, 0.9079014073527389, 0.9709459913648715, 1.033990575377004, 1.0970351593891365, 1.1600797434012833, 1.2231243274134158, 1.2861689114255483, 1.3492134954376809, 1.4122580794498134, 1.475302663461946, 1.5383472474740927, 1.6013918314862252, 1.6644364154983577, 1.7274809995104903, 1.7905255835226228, 1.8535701675347553, 1.9166147515468879, 1.9796593355590346, 2.042703919571167, 2.1057485035832997, 2.168793087595432, 2.2318376716075647, 2.2948822556196973, 2.357926839631844, 2.4209714236439766, 2.484016007656109, 2.5470605916682416, 2.610105175680374, 2.6731497596925067, 2.7361943437046534, 2.799238927716786, 2.8622835117289185, 2.925328095741051, 2.9883726797531835, 3.051417263765316, 3.1144618477774486, 3.1775064317895954, 3.240551015801728, 3.3035955998138604, 3.366640183825993, 3.4296847678381255, 3.492729351850258, 3.5557739358624048, 3.6188185198745373, 3.68186310388667, 3.7449076878988024, 3.807952271910935, 3.8709968559230674, 3.934041439935214, 3.9970860239473467, 4.060130607959479, 4.123175191971612, 4.186219775983744, 4.249264359995877, 4.312308944008024, 4.375353528020156, 4.438398112032289, 4.501442696044421, 4.564487280056554, 4.627531864068686, 4.690576448080819, 4.7536210320929655, 4.816665616105098, 4.879710200117231, 4.942754784129363, 5.005799368141496, 5.068843952153628, 5.131888536165775, 5.194933120177907, 5.25797770419004, 5.3210222882021725, 5.384066872214305, 5.4471114562264376, 5.510156040238584, 5.573200624250717, 5.636245208262849, 5.699289792274982, 5.762334376287114, 5.825378960299247, 5.8884235443113795, 5.951468128323526, 6.014512712335659, 6.077557296347791, 6.140601880359924, 6.203646464372056, 6.266691048384189, 6.329735632396336, 6.392780216408468, 6.455824800420601, 6.518869384432733, 6.581913968444866, 6.644958552456998, 6.708003136469145, 6.771047720481278, 6.83409230449341, 6.897136888505543, 6.960181472517675, 7.023226056529808, 7.086270640541954, 7.149315224554087, 7.2123598085662195, 7.275404392578352, 7.338448976590485, 7.401493560602617, 7.46453814461475, 7.527582728626896, 7.590627312639029, 7.653671896651161, 7.716716480663294, 7.7797610646754265, 7.842805648687559, 7.905850232699706, 7.968894816711838, 8.03193940072397, 8.094983984736103, 8.158028568748236, 8.221073152760368, 8.284117736772515, 8.347162320784648, 8.41020690479678, 8.473251488808913, 8.536296072821045, 8.599340656833178, 8.66238524084531, 8.725429824857457, 8.78847440886959, 8.851518992881722, 8.914563576893855, 8.977608160905987, 9.040652744918134, 9.103697328930252, 9.166741912942399, 9.229786496954517, 9.292831080966664, 9.35587566497881, 9.41892024899093, 9.481964833003076, 9.545009417015194, 9.608054001027341, 9.671098585039488, 9.734143169051606, 9.797187753063753, 9.860232337075871, 9.923276921088018, 9.986321505100136, 10.049366089112283, 10.11241067312443] expected = [-0.5421240249263661, -0.4790794409142336, -0.41603485690208686, -0.3529902728899543, -0.2899456888778218, -0.22690110486568926, -0.16385652085355673, -0.1008119368414242, -0.037767352829277456, 0.025277231182855076, 0.08832181519498761, 0.15136639920712014, 0.21441098321925267, 0.2774555672313852, 0.34050015124351773, 0.4035447352556645, 0.466589319267797, 0.5296339032799295, 0.5926784872920621, 0.6557230713041946, 0.7187676553163271, 0.7818122393284739, 0.8448568233406064, 0.9079014073527389, 0.9709459913648715, 1.033990575377004, 1.0970351593891365, 1.1600797434012833, 1.2231243274134158, 1.2861689114255483, 1.3492134954376809, 1.4122580794498134, 1.475302663461946, 1.5383472474740927, 1.6013918314862252, 1.6644364154983577, 1.7274809995104903, 1.7905255835226228, 1.8535701675347553, 1.9166147515468879, 1.9796593355590346, 2.042703919571167, 2.1057485035832997, 2.168793087595432, 2.2318376716075647, 2.2948822556196973, 2.357926839631844, 2.4209714236439766, 2.484016007656109, 2.5470605916682416, 2.610105175680374, 2.6731497596925067, 2.7361943437046534, 2.799238927716786, 2.8622835117289185, 2.925328095741051, 2.9883726797531835, 3.051417263765316, 3.1144618477774486, 3.1775064317895954, 3.240551015801728, 3.3035955998138604, 3.366640183825993, 3.4296847678381255, 3.492729351850258, 3.5557739358624048, 3.6188185198745373, 3.68186310388667, 3.7449076878988024, 3.807952271910935, 3.8709968559230674, 3.934041439935214, 3.9970860239473467, 4.060130607959479, 4.123175191971612, 4.186219775983744, 4.249264359995877, 4.312308944008024, 4.375353528020156, 4.438398112032289, 4.501442696044421, 4.564487280056554, 4.627531864068686, 4.690576448080819, 4.7536210320929655, 4.816665616105098, 4.879710200117231, 4.942754784129363, 5.005799368141496, 5.068843952153628, 5.131888536165775, 5.194933120177907, 5.25797770419004, 5.3210222882021725, 5.384066872214305, 5.4471114562264376, 5.510156040238584, 5.573200624250717, 5.636245208262849, 5.699289792274982, 5.762334376287114, 5.825378960299247, 5.8884235443113795, 5.951468128323526, 6.014512712335659, 6.077557296347791, 6.140601880359924, 6.203646464372056, 6.266691048384189, 6.329735632396336, 6.392780216408468, 6.455824800420601, 6.518869384432733, 6.581913968444866, 6.644958552456998, 6.708003136469145, 6.771047720481278, 6.83409230449341, 6.897136888505543, 6.960181472517675, 7.023226056529808, 7.086270640541954, 7.149315224554087, 7.2123598085662195, 7.275404392578352, 7.338448976590485, 7.401493560602617, 7.46453814461475, 7.527582728626896, 7.590627312639029, 7.653671896651161, 7.716716480663294, 7.7797610646754265, 7.842805648687559, 7.905850232699706, 7.968894816711838, 8.03193940072397, 8.094983984736103, 8.158028568748236, 8.221073152760368, 8.284117736772515, 8.347162320784648, 8.41020690479678, 8.473251488808913, 8.536296072821045, 8.599340656833178, 8.66238524084531, 8.725429824857457, 8.78847440886959, 8.851518992881722, 8.914563576893855, 8.977608160905987, 9.040652744918134, 9.103697328930252, 9.166741912942399, 9.229786496954517, 9.292831080966664, 9.35587566497881, 9.41892024899093, 9.481964833003076, 9.545009417015194, 9.608054001027341, 9.671098585039488, 9.734143169051606, 9.797187753063753, 9.860232337075871, 9.923276921088018, 9.986321505100136, 10.049366089112283, 10.11241067312443, 10.175455257136548]
self.assertEqual(actual, expected, "Expected different line for first line of best fit.") np.testing.assert_almost_equal(actual, expected, 7, "Expected different line for first line of best fit.")
actual = self.ax.get_lines()[1].get_ydata().tolist() actual = self.ax.get_lines()[1].get_ydata().tolist()
expected = [7.06107985777146, 7.227507131103323, 7.393934404435242, 7.560361677767105, 7.726788951098968, 7.89321622443083, 8.059643497762693, 8.226070771094555, 8.392498044426418, 8.55892531775828, 8.725352591090143, 8.891779864422006, 9.058207137753925, 9.224634411085788, 9.39106168441765, 9.557488957749513, 9.723916231081375, 9.890343504413238, 10.0567707777451, 10.223198051076963, 10.389625324408826, 10.556052597740688, 10.72247987107255, 10.88890714440447, 11.055334417736333, 11.221761691068195, 11.388188964400058, 11.55461623773192, 11.721043511063783, 11.887470784395646, 12.053898057727508, 12.220325331059371, 12.386752604391233, 12.553179877723153, 12.719607151055015, 12.886034424386878, 13.05246169771874, 13.218888971050603, 13.385316244382466, 13.551743517714328, 13.718170791046191, 13.884598064378054, 14.051025337709916, 14.217452611041836, 14.383879884373698, 14.55030715770556, 14.716734431037423, 14.883161704369286, 15.049588977701148, 15.216016251033011] expected = [7.06107985777146, 7.227507131103323, 7.393934404435242, 7.560361677767105, 7.726788951098968, 7.89321622443083, 8.059643497762693, 8.226070771094555, 8.392498044426418, 8.55892531775828, 8.725352591090143, 8.891779864422006, 9.058207137753925, 9.224634411085788, 9.39106168441765, 9.557488957749513, 9.723916231081375, 9.890343504413238, 10.0567707777451, 10.223198051076963, 10.389625324408826, 10.556052597740688, 10.72247987107255, 10.88890714440447, 11.055334417736333, 11.221761691068195, 11.388188964400058, 11.55461623773192, 11.721043511063783, 11.887470784395646, 12.053898057727508, 12.220325331059371, 12.386752604391233, 12.553179877723153, 12.719607151055015, 12.886034424386878, 13.05246169771874, 13.218888971050603, 13.385316244382466, 13.551743517714328, 13.718170791046191, 13.884598064378054, 14.051025337709916, 14.217452611041836, 14.383879884373698, 14.55030715770556, 14.716734431037423, 14.883161704369286, 15.049588977701148, 15.216016251033011, 15.382443524364874]
self.assertEqual(actual, expected, "Expected different line for second line of best fit.") np.testing.assert_almost_equal(actual, expected, 7, "Expected different line for second line of best fit.")
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()