# Copyright (C) 2006-2007 Red Hat, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import hippo import math import gobject import colorsys from sugar.graphics.canvasicon import CanvasIcon from sugar.graphics import style from sugar.graphics import xocolor from sugar import profile # TODO: rgb_to_html and html_to_rgb are useful elsewhere # we should put this in a common module def rgb_to_html(r, g, b): """ (r, g, b) tuple (in float format) -> #RRGGBB """ return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255)) def html_to_rgb(html_color): """ #RRGGBB -> (r, g, b) tuple (in float format) """ html_color = html_color.strip() if html_color[0] == '#': html_color = html_color[1:] if len(html_color) != 6: raise ValueError, "input #%s is not in #RRGGBB format" % html_color r, g, b = html_color[:2], html_color[2:4], html_color[4:] r, g, b = [int(n, 16) for n in (r, g, b)] r, g, b = (r / 255.0, g / 255.0, b / 255.0) return (r, g, b) class ActivityIcon(CanvasIcon): _INTERVAL = 250 def __init__(self, activity): icon_name = activity.get_icon_name() self._orig_color = activity.get_icon_color() self._icon_colors = self._compute_icon_colors() self._direction = 0 self._level_max = len(self._icon_colors) - 1 self._level = self._level_max color = self._icon_colors[self._level] CanvasIcon.__init__(self, icon_name=icon_name, xo_color=color, size=style.MEDIUM_ICON_SIZE, cache=True) self._activity = activity self._pulse_id = 0 activity.connect('notify::launching', self._launching_changed_cb) if activity.props.launching: self._start_pulsing() def _launching_changed_cb(self, activity, pspec): if activity.props.launching: self._start_pulsing() else: self._stop_pulsing() def __del__(self): self._cleanup() def _cleanup(self): if self._pulse_id: gobject.source_remove(self._pulse_id) self._pulse_id = 0 # dispose of all rendered icons from launch feedback self._clear_buffers() def _compute_icon_colors(self): _LEVEL_MAX = 1.6 _LEVEL_STEP = 0.16 _LEVEL_MIN = 0.0 icon_colors = {} level = _LEVEL_MIN for i in range(0, int(_LEVEL_MAX / _LEVEL_STEP)): icon_colors[i] = self._get_icon_color_for_level(level) level += _LEVEL_STEP return icon_colors def _get_icon_color_for_level(self, level): factor = math.sin(level) h, s, v = colorsys.rgb_to_hsv(*html_to_rgb(self._orig_color.get_fill_color())) new_fill = rgb_to_html(*colorsys.hsv_to_rgb(h, s * factor, v)) h, s, v = colorsys.rgb_to_hsv(*html_to_rgb(self._orig_color.get_stroke_color())) new_stroke = rgb_to_html(*colorsys.hsv_to_rgb(h, s * factor, v)) return xocolor.XoColor("%s,%s" % (new_stroke, new_fill)) def _pulse_cb(self): if self._direction == 1: self._level += 1 if self._level > self._level_max: self._direction = 0 self._level = self._level_max elif self._direction == 0: self._level -= 1 if self._level <= 0: self._direction = 1 self._level = 0 self.props.xo_color = self._icon_colors[self._level] self.emit_paint_needed(0, 0, -1, -1) return True def _start_pulsing(self): if self._pulse_id: return self._pulse_id = gobject.timeout_add(self._INTERVAL, self._pulse_cb) def _stop_pulsing(self): if not self._pulse_id: return self._cleanup() self._level = 100.0 self.props.xo_color = self._orig_color # Force the donut to redraw now that we know how much memory # the activity is using. self.emit_request_changed() def get_activity(self): return self._activity class ActivitiesDonut(hippo.CanvasBox, hippo.CanvasItem): __gtype_name__ = 'SugarActivitiesDonut' def __init__(self, shell, **kwargs): hippo.CanvasBox.__init__(self, **kwargs) self._activities = [] self._shell = shell self._angles = [] self._model = shell.get_model().get_home() self._model.connect('activity-added', self._activity_added_cb) self._model.connect('activity-removed', self._activity_removed_cb) self._model.connect('active-activity-changed', self._activity_changed_cb) self.connect('button-release-event', self._button_release_event_cb) def _get_icon_from_activity(self, activity): for icon in self._activities: if icon.get_activity().equals(activity): return icon def _activity_added_cb(self, model, activity): self._add_activity(activity) def _activity_removed_cb(self, model, activity): self._remove_activity(activity) def _activity_changed_cb(self, model, activity): self.emit_paint_needed(0, 0, -1, -1) def _remove_activity(self, activity): icon = self._get_icon_from_activity(activity) if icon: self.remove(icon) icon._cleanup() self._activities.remove(icon) def _add_activity(self, activity): icon = ActivityIcon(activity) self.append(icon, hippo.PACK_FIXED) self._activities.append(icon) self.emit_paint_needed(0, 0, -1, -1) def _get_activity(self, x, y): # Compute the distance from the center. [width, height] = self.get_allocation() x -= width / 2 y -= height / 2 r = math.hypot(x, y) # Ignore the click if it's not inside the donut if r < self._get_inner_radius() or r > self._get_radius(): return None # Now figure out where in the donut the click was. angle = math.atan2(-y, -x) + math.pi # Unfortunately, _get_angles() doesn't count from 0 to 2pi, it # counts from roughly pi/2 to roughly 5pi/2. So we have to # compare its return values against both angle and angle+2pi high_angle = angle + 2 * math.pi for index, activity in enumerate(self._model): [angle_start, angle_end] = self._get_angles(index) if angle_start < angle and angle_end > angle: return activity elif angle_start < high_angle and angle_end > high_angle: return activity return None def _button_release_event_cb(self, item, event): activity = self._get_activity(event.x, event.y) if activity is None: return False activity_host = self._shell.get_activity(activity.get_activity_id()) if activity_host: activity_host.present() return True MAX_ACTIVITIES = 10 MIN_ACTIVITY_WEDGE_SIZE = 1.0 / MAX_ACTIVITIES def _get_activity_sizes(self): # First get the size of each process that hosts an activity, # and the number of activities it hosts. process_size = {} num_activities = {} total_activity_size = 0 for activity in self._model: pid = activity.get_pid() if not pid: # Still starting up, hasn't opened a window yet continue if process_size.has_key(pid): num_activities[pid] += 1 continue try: statm = open('/proc/%s/statm' % pid) # We use "RSS" (the second field in /proc/PID/statm) # for the activity size because that's what ps and top # use for calculating "%MEM". We multiply by 4 to # convert from pages to kb. process_size[pid] = int(statm.readline().split()[1]) * 4 total_activity_size += process_size[pid] num_activities[pid] = 1 statm.close() except IOError: logging.warn('ActivitiesDonut: could not read /proc/%s/statm' % pid) except (IndexError, ValueError): logging.warn('ActivitiesDonut: /proc/%s/statm was not in ' + 'expected format' % pid) # Next, see how much free memory is left. try: meminfo = open('/proc/meminfo') meminfo.readline() free_memory = int(meminfo.readline()[9:-3]) meminfo.close() except IOError: logging.warn('ActivitiesDonut: could not read /proc/meminfo') except (IndexError, ValueError): logging.warn('ActivitiesDonut: /proc/meminfo was not in ' + 'expected format') # Each activity starts with MIN_ACTIVITY_WEDGE_SIZE. The # remaining space in the donut is allocated proportionately # among the activities-of-known-size and the free space used_space = ActivitiesDonut.MIN_ACTIVITY_WEDGE_SIZE * len(self._model) remaining_space = max(0.0, 1.0 - used_space) total_memory = total_activity_size + free_memory activity_sizes = [] for activity in self._model: percent = ActivitiesDonut.MIN_ACTIVITY_WEDGE_SIZE pid = activity.get_pid() if process_size.has_key(pid): size = process_size[pid] / num_activities[pid] percent += remaining_space * size / total_memory activity_sizes.append(percent) return activity_sizes def _compute_angles(self): percentages = self._get_activity_sizes() self._angles = [] if len(percentages) == 0: return # The first wedge (Journal) should be centered at 6 o'clock size = percentages[0] * 2 * math.pi angle = (math.pi - size) / 2 self._angles.append(angle) for size in percentages: self._angles.append(self._angles[-1] + size * 2 * math.pi) def _get_angles(self, index): return [self._angles[index], self._angles[(index + 1) % len(self._angles)]] def _get_radius(self): [width, height] = self.get_allocation() return min(width, height) / 2 def _get_inner_radius(self): return self._get_radius() * 0.5 def do_paint_below_children(self, cr, damaged_box): [width, height] = self.get_allocation() cr.translate(width / 2, height / 2) radius = self._get_radius() # Outer Ring cr.set_source_rgb(0xf1 / 255.0, 0xf1 / 255.0, 0xf1 / 255.0) cr.arc(0, 0, radius, 0, 2 * math.pi) cr.fill() # Selected Wedge current_activity = self._model.get_current_activity() if current_activity is not None: selected_index = self._model.index(current_activity) [angle_start, angle_end] = self._get_angles(selected_index) cr.new_path() cr.move_to(0, 0) cr.line_to(radius * math.cos(angle_start), radius * math.sin(angle_start)) cr.arc(0, 0, radius, angle_start, angle_end) cr.line_to(0, 0) cr.set_source_rgb(1, 1, 1) cr.fill() # Edges if len(self._model): n_edges = len(self._model) + 1 else: n_edges = 0 for i in range(0, n_edges): cr.new_path() cr.move_to(0, 0) [angle, unused_angle] = self._get_angles(i) cr.line_to(radius * math.cos(angle), radius * math.sin(angle)) cr.set_source_rgb(0xe2 / 255.0, 0xe2 / 255.0, 0xe2 / 255.0) cr.set_line_width(4) cr.stroke_preserve() # Inner Ring cr.new_path() cr.arc(0, 0, self._get_inner_radius(), 0, 2 * math.pi) cr.set_source_rgb(0xe2 / 255.0, 0xe2 / 255.0, 0xe2 / 255.0) cr.fill() def do_allocate(self, width, height, origin_changed): hippo.CanvasBox.do_allocate(self, width, height, origin_changed) radius = (self._get_inner_radius() + self._get_radius()) / 2 self._compute_angles() for i, icon in enumerate(self._activities): [angle_start, angle_end] = self._get_angles(i) angle = angle_start + (angle_end - angle_start) / 2 [icon_width, icon_height] = icon.get_allocation() x = int(radius * math.cos(angle)) - icon_width / 2 y = int(radius * math.sin(angle)) - icon_height / 2 self.set_position(icon, x + width / 2, y + height / 2)